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PREFACE 

This report presents the results of a study that started at Leiden University, The 
Netherlands. The goal of the study was to develop a quantitative approach to test the ef- 
ficacy of mental models that humans use to interact with artifices such as ATMs and 
computer programs. As a matter of good fortune the particular mental model studied ap- 
peared to have great relevance for the increased USAF interest in UAV technology. We 
hope the approach will be applied fruitfully in this context. 

The major part of this work was performed while the first author was a Senior 
Research Associate with the National Research Council at the Armstrong Laboratory. 

The authors are indebted to Dr. Richard Roberts and Dr. Anna Rowe for many 
suggestions that improved the quality of the report. 



SUMMARY OF RESULTS 

Holland, Holyoak, Nisbett, and Thagard (1986) propose a formalism to capture the 
dynamics of mental models: a transition function defined on a set of model states, the 
result of a categorizing of environmental states. This transition function mimics the 
state changes that unfold in the environment. The paper shows that the addition of a 
few reasonable constraints to this formalism results in a class of transition functions 
with well-known properties — the general class of finite-state machines. 
It is shown that finite-state machines can be empirically tested by contigency tables in 
which symbols of an input alphabet (rows) are mapped on symbols of an output al- 
phabet (columns) and each state is represented as a different layer of cross- 
classification. Model testing of Probabilistic Finite Automata can be straightfor- 
wardly accomplished using chi-square based statistics. 
Empirical evaluation of Deterministic Finite Automata can be accomplished by ap- 
plying techniques derived from Information Theory. Information Theory defines a 
Deterministic Finite Automaton as a perfect channel. That is, the information trans- 
mitted is equal to the maximum uncertainty. Model deviations can be quantified as 
information loss (i.e., the difference between maximum uncertainty and information 
transmitted). 

VI 



INTRODUCTION 

Whenever someone has acquired the cognitive skill to use some interactive device 
(e.g., a fighter jet, a car, an ATM, or a word processing system), he or she is assumed to 
have a cognitive representation of it that is like a working model. Cognitive scientists 
have used the term 'mental model' in these contexts to refer to a theoretical construct that 
interrelates conceptual knowledge with procedural skills. The common core of many 
theoretical treatments is the notion that cognitive systems construct models of a particular 
content domain. These models can be mentally 'run', or manipulated to produce infer- 
ences, explanations, and predictions about the system (Holland, Holyoak, Nisbett, & 
Thagard, 1986; Holyoak, 1985; Holyoak, Koh, & Nisbett, 1989; Johnson-Laird, 1983, 
1989; Payne, 1988; Rogers & Rutherford, 1992). 

Holland et al. (1986) propose a transition function as a formalism to capture the 
dynamics of mental models. They propose to conceive of a mental model as a mental 
representation that encodes a particular environment into categories and subsequently 
employs such categories to define an internal transition function that mimics the state 
changes unfolding in this environment. A mental model is considered valid to the extent 
that the relationship between the mental model and the corresponding part of the envi- 
ronment is a homomorphism, that is, a many-to-one structure mapping of states, and state 
change operators, from the external environment to the mental model (Holyoak, 1985).1 

This abstract characterization of mental models is neutral concerning the issue of the in- 
formation processing mechanisms that may be employed to construct mental models. 
However, Holland et al. (1986) argue that mental models are assembled from sets of pro- 
duction rules. The empirical credibility of their theory is tested through comparison of 
the performance of humans or lower animals with the operation of particular production 
systems (e.g., Holyoak et al., 1989). 

In this paper we investigate how the abstract characterization of mental models 
postulated by Holland et al. (1986) can be tested without simultaneously being con- 
founded with a particular cognitive architecture. Students of mental models are primarily 
interested in the behavioral effects of mental models as knowledge representations, rather 
than in grand theories of cognitive architecture (e.g., Payne, 1992). The focus of this in- 
vestigation will be those mental models that govern the interaction with relatively com- 
plex devices (e.g., such as studied in the field of human-computer interaction). These 
models are often referred to as "user models" (Norman, 1983,1986). 

In the first part of the paper a formal definition of mental models similar to that of 
Holland et al. (1986) is presented. It will be shown that the addition of a few reasonable 
constraints to the formalism proposed by Holland et al. (1986) results in a class of transi- 
tion functions with well-known properties — the general class of finite-state machines 
(Davis, Sigal, & Weyuker, 1994; Denning, Dennis, & Qualitz, 1978; Kolman & Busby, 
1987; Minsky, 1967). Modeling mental models as finite-state machines has several ad- 
vantages. First, the finite-state formalism provides systematic ways to achieve a minimal 

1 Or rather, a quasi-homomorphism (i.e., q-morphism), to allow for the fact that 
most mental representations in real life will be imperfect. 



form of a machine that accounts for a given set of input-output mappings (Denning et al.. 
1978). Thus securing a fully parsimonious account of any particular mental model (un- 
like the production rules system approach). Second, because the theory of finite-state 
machines is intertwined with the theory of abstract grammars, the likelihood of a given 
sequence of input actions performed by a user (conceived of as an input alphabet) can be 
estimated under the hypothesis of a specific finite-state machine. In this paper we present 
a method to empirically test mental models conceptualized as finite-state machines. 

Part two of the paper presents detailed calculation methods to demonstrate certain 
insights that may be gained from this approach. Data from a spatial reasoning experi- 
ment will be used. In this experiment second grade and third grade children were asked 
to move an object from an initial state to a goal state on the basis of a schematic diagram 
of a spatial structure. There were two versions of the task. One version resembles a city 
plan with recognizable markers (i.e., shops and churches) and a recognizable object (i.e., 
a model of a bus). The other version had abstract markers (such as triangles and squares), 
and a more abstract object to be moved (i.e., a pawn). In this paper only data from the 
version employing the bus model is discussed. 

PARTI 

A formal definition of mental models 

The Holland et al. (1986) conception of mental models consists of two elements. First, a 
categorization function that categorizes environmental states and, second, a transition 
function defined on these categories of environmental states which mimics the state 
changes in the environment to be predicted. For ease of exposition the elements are dis- 
cussed in their reverse order. 

The transition function 

A finite-state function 
Following Holland et al. (1986) we characterize a mental model M as a transition func- 
tion (or a next-state function) 8 defined over a set of states Q and a set of inputs I.2 

b.QxI^Q (1) 

The domain of the transition function 8 is the set of all state-input pairs, and its range is a 
subset of states. The transition function in Holland et al. (1986) and Holyoak (1985) does 
not provide a model in the strictest sense.   Rather, it provides a general metaphor for 

2 Actually, we follow a notation more similar to the notation presented in Holyoak 
(1985), which is clearer than Holland et al.'s (1986) notation. 



theorizing about changes in an environment. It applies equally well equally to a very 'lo- 
cal environment' (e.g., a chessboard, pieces and players) as to the whole of the universe 
(Holland et al. 1986, p. 30). The input or action term of the transition function can repre- 
sent (discrete) actions of human participants, as well as (continuous) autonomous effects 
such as those caused by the working of the laws of nature (e.g., all fast-moving objects 
slow down (Holland et al. 1986, p. 31)). 

In this paper a special class of transition functions is investigated. These func- 
tions may be derived by constraining the general model further and by then assuming the 
following properties of M, Q, I, and 8 

• The behavior of M is defined only at the moments t = 0,1,2,... 
• The states qt are chosen from a finite set of states Q (i.e., the set of model states). 
• The input symbols Sf are chosen from a finite alphabet / (i.e., the input alphabet). 
• The output symbols Of are chosen from a finite alphabet O (i.e., the output alphabet). 
• The behavior of M is uniquely determined by the sequence of input symbols that are 

presented. 

Now, M is constrained to describe discrete phenomena. The occurrence of discrete phe- 
nomena may be represented as a sequence of events, in which any event is a 'next-to' 
event, and some events may be 'initial', whilst others may be 'terminal' events. It is 
convenient to think of system M as a machine that can accept input, possibly produce 
output, and have some sort of internal memory that can keep track of certain information 
about these previous inputs. It is assumed that M's memory for past events is of a fixed, 
finite size. As a consequence, M can only distinguish between some finite number of 
classes of possible event sequences. These classes will be called the states of the ma- 
chine. Two additional assumptions determine the finitude of M: the input and output pa- 
rameters of system M can only assume a finite number of distinct values. By convention 
the sets of values which these parameters can assume are called the input alphabet (I) and 
output alphabet (O), respectively. Each element in / and in O is called a symbol. Further, 
it is assumed that M works at discrete intervals of time. At each time M is in one of these 
states, say qt- The state #/+, at the next time interval only depends on the previous state 
qt and the input st given at time t. 

Together, these properties characterize the triple M = (Q, I, 8) as a finite automa- 
ton (Davis et al, 1994; Denning et al, 1978; Kolman & Busby, 1987; Minsky, 1967). The 
transition function 8, which maps Q x I on Q, consists of a finite set of productions. 
Formally, productions that map the current state and input signal onto the next state are 
designated 8 (qt, sj) -» qt+1- The states q e Q refer to states of model M. In order to 
produce observable output, M must encompass a function to relate the various model 
states, or state transitions, to its output. 

Let X be an output function X, which maps Q x / on O. The output function X 
consists of a finite set of productions X (qt, st) -> Of+], which map the current state and 
input signal onto the next output. The output function X qualifies M as a so-called Mealy 
machine and is usually referred to as a sixtuple, M = (Q, I, O, 8, X, qj), where Q, I, O, 8, 
and X are as defined previously, and qj designates the initial state of M (i.e., qj e Q). A 



Mealy machine is a special type of automaton where the output is associated with the 
transition between states. Thus, X (qt, si) -> 0/+7 gives an output which shows the tran- 
sition from state qt on input Sf. The output of a Mealy machine M in response to a se- 
quence of input symbols 57, S2,... sn is X (qj, sj), X (q2, S2), -, X (qn, sn), where 02, 03, 
..., on+] is the sequence of outputs produced in parallel to the state sequence q2, q3, ..., 

Vn+v 
To further characterize finite-state machines, note that a special case of a finite- 

state machine arises when 

b(q,s) = b(s) (2) 

Such a machine is called a trivial machine. A trivial machine determines a fixed function 
between input and output. Finite-state machines belong to the group of computational 
systems that can compute various functions. Thus, 8 (q, s) * 8 (s), with q providing a 
specification of the function to be computed. It is preferable to consider q a system pa- 
rameter, rather then a second argument of the function. The specific nature of the state 
set of a finite-state machine will be further explicated in the next section. 

Deterministic versus Probabilistic Automata 
We will now introduce a distinction that has significant implications for the empirical test 
of mental representations modeled as finite-state machines. These implications will be 
elaborated upon in a later section. 

The finite automaton discussed so far is strictly deterministic in its actions: at each 
moment the next state and the output symbol are uniquely determined by the present state 
and input symbol. A deterministic finite automaton (DFA) can be considered as a special 
case of a probabilistic finite automaton (PFA), where Sj and 8 (qt, si) consists of one 
state, and X (qt, si) consists of one output symbol. In a PFA the productions of the DFA 
state transition function 8 (qt, si) -» qt+l, are replaced by productions of the form 8 (qt, si) 
-> {<lt+\ 1 —■> <lt+\,n}- Thus, given a present state q\ and an input symbol SJ various states q 
€ Q can be the next state. To each of the n possible transitions a probability Pi (qj, sß is 
assigned. Associated with each state q\ and input symbol SJ is a stochastic (column) 
vector f(qi, si) of transition probabilities (i.e., an n-dimensional vector with non-negative 
components, the sum of which equals 1). 

In a similar way the productions of the output function X (qt, si) -» o/+, are written 
as X. (qt, si) -> {o/+ll5..., 0/+, m}.  Thus given a present state q\ and input symbol SJ 

3 An alternative way to assign an output is by a function X' = Q -> O. An automa- 
ton with a A/-type output function assigns an output symbol to each state. This type of 
machine is known in the literature as a Moore machine. A prototypical example of a 
Moore machine, or recognition machine, is a parity checker, that is, a machine that indi- 
cates by its output whether the parity of a sequence of input symbols in the binary alpha- 
bet {0, 1} is odd or even. Although this type of automaton can be shown to be formally 
equivalent to a Mealy machine (e.g., Denning et al, 1978) in this paper we will only deal 
with Mealy machines. 



various output symbols o e O are possible. Each of the m possible outputs is assigned a 
probability. The set of output probabilities is also a stochastic (row) vector cp (q\, sß. 
Note that a stochastic (row or column) vector is a coordinate vector iff one of its compo- 
nents equals 1. Thus, a deterministic Mealy machine represents the special case of a 
probabilistic automaton, where all of the vectors/and q>, as well as Sj (the initial state 
distribution) are coordinate vectors. 

Probabilistic finite automata may be useful to model mental representations of 
interpersonal interactions or other processes with a stochastic component, such as running 
a business, or planning interventions in a macro economic system. In this paper we in- 
vestigate the assessment of mental models of devices that are constructed such that their 
behavior is (or may be expected to be) perfectly predictable. For example, airplanes, 
cars, ATMs, application programs and other high-tech products of our culture. Through- 
out the paper the term finite-state machines will be used to refer to deterministic finite- 
state machines, unless explicitly stated otherwise. 

Engineers and naive users 
In summary, a finite-state machine can be viewed as a general mathematical model of an 
interactive system defined by a finite number of states. When it is presented with an input 
from an action performed by a user, then, as a function of this input and its current internal 
state, it will respond by moving to another of its internal states, and produce an output. Fi- 
nite-state machines have been used to model devices ranging in complexity from simple 
'flip-flops', such as light switches, to entire computers. Most engineering and scientific 
investigations use finite-state machine models to characterize a particular system in order 
to achieve effective control over and predictability of its behavior. This enterprise is not 
principally different from the attempts of naive users to construct mental models in order 
to gain control over a device and utilize it effectively. 

The categorization function 

At any point in time, a person interacting with a computer or another device will be able 
to observe a set of« different physical states, in which such a system can be. These states 
characterize the system's dynamic behavior and we will refer to these states as system 
states. It is reasonable to expect that a person attempts to construct a simplified model by 
aggregating the system states into useful categories and ignoring details that are irrelevant 
to the purpose of the model (Holland et al. 1986). 

Some m dimensions can describe each of the system states. Each dimension k has 
pk values. A single dimension, or a combination of individual dimensions, can form a 
basis to partition the set of system states E. If the person is able to detect such a dimen- 
sion (or subset of dimensions) and considers it relevant for his or her purposes, then the 
person will use that dimension (or subset of dimensions) to aggregate the set of system 
states E into the set of model states Q. Formally, this aggregation process can be de- 
scribed as a mapping of system states to model states. In the literature this mapping has 
been referred to as a categorization function P (Holland et al., 1986), or an instantiation 



function IF (Pylyshyn, 1984).  We will follow the Holland et al. terminology.   Subse- 
quently, some aspects of this function will be discussed. 
Functionally equivalent system states 
Any function necessarily determines an equivalence relation on its domain, which parti- 
tions the domain into equivalence classes (see APPENDIX 1, section A). The signifi- 
cance of the partitioning of the set of system states E into equivalence classes or catego- 
ries is based on the intensional definition of its categories. For each system state e € [e], 
where [e] denotes a partition of E, an identical function/ I -» O is defined, where / de- 
notes the finite set of input symbols and O the finite set of output symbols. Each cate- 
gory [e] e E has a unique function/ / -» 0. Each category thus defines an equivalence 
class of system states that are indistinguishable from a functional point of view. In other 
words, a person who wants to utilize a device effectively has to partition the set of system 
states into mutually exclusive categories. The partition should maximize what the person 
can predict about the system's behavior in response to his or her actions. 

For illustrative purposes, let us consider the well-known children's programming 
environment called the LOGO 'Turtle World' (Papert, 1980; Abelson & diSessa, 1980). 
This microworld has been especially designed to help children in developing useful ways 
of thinking about computing. The LOGO 'Turtle World' provides a graphical interface in 
which children can explore the effects of simple programming commands on the behavior 
of a screen object, called the 'turtle'. A set of very simple commands such as FORWARD 
and BACK (move the turtle), and LEFT and RIGHT (rum the turtle) is available to effect 
the state of the turtle on the computer screen. Each series of concrete actions performed by 
the turtle create a graphical trace on the computer screen. In this way, LOGO programming 
permits the turtle to draw regular polygons and other geometrical shapes. Each system 
state of the turtle can be described as a set of physical dimensions. For example, a par- 
ticular location (i.e., X- and F-coordmates), orientation, and color of the turtle. Only one 
of these dimensions is causally relevant for any of the state changes that may occur in re- 
sponse to an input action performed by the student. Unless the student has discovered 
this dimension, he or she will be confused by what seems like the unpredictable behavior 
of the turtle. For example, in the LOGO 'Turtle World' the impact of the commands 
given to the turtle is conditional upon its orientation on the screen. In the turtle's primary 
position, that is, facing up, the command FORWARD 100 results in a movement across 
the 7-axis. However, when the turtle is facing east, and it is given the command FOR- 
WARD 100, the turtle moves across the X-axis. This difference in the turtle's behavior 
has been shown to be a substantial source of confusion in young children (Fay & Mayer, 
1987; Cohen, 1987). 

For each orientation of the turtle a different mapping is defined of input symbols 
(i.e., the programming commands FORWARD, BACK, RIGHT and LEFT) to output 
symbols (changes in location or orientation of the turtle), irrespective of its location 
and/or color. Thus, each orientation of the turtle defines an equivalent class of system 
states that may differ in location and/or color, but share the same function relating pro- 
gramming commands to the turtle's behavior. 

In summary, the basic claim is that the human user of an interactive system will 
categorize system states such that the prediction of the effect of an input action is maxi- 



mally accurate. Knowledge of the current state of the machine, reduces the uncertainty 
about the effect of a possible action. 

Encoding and decoding 
To further explore the relationship between mental model and the system being modeled, 
we will now investigate some characteristics of P. Let e e E and q e Q. The function P: 
E -» Q is then defined by 

P(e) = q (3) 

Let/?: E -» E/R (see APPENDIX, section A) and m: EIR -> Q be functions. Let [e] € 
E/R.  The function/?: E -» EIR is then defined by 

p(e) = [e] (4) 

and the function m: EIR -» Q is then defined by 

m([e]) = q (5) 

The function P can be written as a composition ofp and m: P(e) = (p ° m) (e) = q, or 
P(e) = m\p (e)] = q. Since the function m: EIR -> Q is a one-to-one function (see AP- 
PENDIX 1, section B), the function m is invertible, that is, its inverse mA is also a func- 
tion. The function/?: E -» £/Ä is not one-to-one. Thus,/? is not invertible. We will call 
the functions P,p and m encoding functions, because they account for the aggregation of 
the set of system states into the set of model states. Their inverse functions, if defined, 
will be referred to as decoding functions. Note, there is only one decoding function: m~l. 

Now consider M = {Q, 1,8), a finite-state machine with state set Q = {qj,..., qn), 
input set I, and state transition functions 8 = {8X | x e 7}. For any q, q' € Q and s e I, we 
write 8S (q) = q', that is, input s takes state q into state q'. The structure M is assumed to 
be a representation of some behavior of a system in the environment. Therefore, the rep- 
resentation law (e.g., Newell, 1990) applies, which in its general form states that the es- 
sence of a representation is to allow to go from one external situation to another by a dif- 
ferent path, that is, by manipulation of a internal representation, rather than by actually 
effecting the initial external situation itself. In symbols: 

decode [encode (7)(encode (e))] = e' (6) 

where e and e' are external situations and T is the external transformation and [encode 
(7)] maps T onto symbol sei, [encode (e)] maps e onto q e Q, and [decode (q)] maps q' 
onto e'(after Newell, 1990, p. 59). Since P is a many-to-one function the predictive 
power of structure M is somewhat limited by the specificity of the partition. Note that P 
has not an inverse that is also a function. Thus, we write P as a composition of/? and m. 
At least m has an inverse function (i.e., the decoding function m~l). Thus, 



m-'{8s[m(p(e))]} = [e] (7) 

where 8S denotes the state transition function which takes the symbol s e I as input. 
Equation (7) readily demonstrates that the predictive power of a model M is limited to the 
prediction of categories of system states (i.e., the finite state machine can predict an 
equivalent class [e ^ instead of a single state e ). This can be a somewhat global predic- 
tion (Holyoak, 1985). Only in the case of a maximally specific partition, that is, a parti- 
tion with only one system state per category, this would lead to the exact prediction of the 
next system state. It seems plausible to assume that this limitation of the representational 
structure requires the (human) cognitive system first to generate the model state corre- 
sponding with the next system state (i.e., goal state or sub goal state), and then to chose 
an input symbol to transfer the current model state into the next model state (compare the 
operator-difference table of Newell & Simon's (1972) General Problem Solver (see also 
Charniak & McDermott, 1985)). 

Empirical consequences 

To derive empirical consequences from this abstract characterization of the representa- 
tional structure implied by Holland et al.'s (1986) notion of a mental model, two auxiliary 
assumptions have to be specified. First, participants are able to verbalize the symbols s e 
/ of M, which stand for the internal representations of the input actions performed by a 
user. Second, the output symbols oeOofM, representing the system's actions, may be 
made observable. Then, the productions 

*- (at. st) -> ot+1 (8) 

contain two sets of observable entities, viz., the input symbols sei, and the output sym- 
bols o e O, as well as one set of non-directly observable entities (i.e., the internal states q 
e Q). However, by substituting (3) in (8), it is possible to obtain 

•k(P{et\st)->ot+i (9) 

where e/ refers to the outcome e that realizes an event q at moment t. In Equation (9) all 
terms represent observable events. 

Equation (9) implies that all factors which connect Sf and o/+/ are explicitly in- 
cluded in qp It is appropriate to map this conjecture into a probability framework by in- 
terpreting st and Of+] as events in two finite sample spaces / and O, respectively. Fur- 
ther, the set of states E can be considered a sample space partitioned by P into a number 
of equivalence classes [e], each of which corresponds with a particular model state. Thus, 
an outcome e e [e] is said to realize event q. In the next section we present a method to 
test a hypothesis involving the partitioning of a set of environment states into equivalence 
classes that may be identified as states of the model. 



Model predictions 
Consider alxJxK cross classification of states q\, i = 1,..., «/, input symbols SJ, j=l, 
..., nj, and output symbols ok, k = 1, ..., nk- Assuming the events SJ and ok are directly 
observable, the event q\ is realized by an outcome e e [e{\, based on a partitioning P^ of 
the set of states E. The relationship among SJ and o# is supposed to be mediated by the 
state variable qi, such that X(qu SJ) -> ok- That is, for every combination of a state and an 
input signal, one and only one output signal may be observed, although a given output 
signal can be associated with more than one combination of state and input signal. 

Let P (qi) represent the unconditional probability of being in state q\. That is, 
given the set of all conceivable observations for a participant, P (qi) represents the prob- 
ability for a randomly selected observation of the system while being in state q\. Similar 
unconditional probabilities can be defined for sj and ofr. Write P (qj, sj) for the probabil- 
ity of the joint event of being in state q\ and receiving input signal SJ, and P (qj, SJ, ok) for 
the probability of the joint event of being in state qj, receiving input signal SJ, and pro- 
ducing an output signal o#. Each cell in the / x J x K cross-classification represents the 
frequency of occurrence of a joint event (qj, sj, ok), which can be easily converted into a 
probability. In general, the following equality holds for this probability: P (qi, SJ, ok) = 
P (ok I sj, qj) P (qi, sj). Similarly, P fa SJ) = P (qj I sj) P (sj) = P(sj I qi) P(q{). Thus we 
get the basic equality: 

P (<7/> Sj, ok) =P(ok\ Sj, qi) P (qj I sj) P (Sj) (10) 

Therefore, a finite state model defines a pattern of expected frequencies in the / x J x K 
cross-classification table, which can be easily calculated from the marginals. As for 
probabilistic finite automata this poses no specific problems for model tests using a chi- 
square based statistic (i.e., %2, likelihood ratio). Note, however, that the definition of the 
DFA implies P (ok I SJ, qi) = 0 or 1. The dependency of o£ on qj and sj can be 
incorporated in the notation by writing i'j' in stead of k, and writing P (o/y' I SJ, qi) = 1 if 
i'-i and j' =j, and zero otherwise. From this it follows that P (qi, SJ, ok) = P (qi I SJ) P 
(SJ), or equals zero. 

Statistics are not required in order to test the deterministic model. When a purely 
deterministic model predicts one (or zero) for a particular cell in a cross-classification 
table, then every deviation from this predicted probability implies that the model should 
be rejected. Thus, visual inspection of the table(s) is sufficient to assess whether the 
hypothesis is confirmed or should be rejected. However, if model deviations are observed, 
it may be useful to characterize the deviations from the model by measures that reflect how 
well predictions from the model conform to the observations. The finite-state machine 
describes essentially a functional, asymmetric relationship between a combination of input 
signal and state on the one hand and an output signal on the other. Thus, the measure of fit 
should allow for a characterization of such an asymmetric relationship. One such measure 
is the lambda statistic, proposed by Goodman and Kruskal (1979). This statistic quantifies 
the reduction in uncertainty in the prediction of one category from the other as a function of 
their association. A disadvantage of this measure is that it only takes into account the 
largest probability in a row (or column).   Some of the other measures are based on the 



concept of entropy as developed within Information Theory (see e.g., Krippendorff, 1986). 
These measures are more closely related to notions familiar from the multivariate analysis 
of numerical variables, such as the variance and proportion of explained variance for a 
dependent variable, and (semi)partial correlations or covariances. These measures are now 
defined. 

An information theoretic evaluation of model coherence 
Entropy. Let the number of categories of a variable Xbc denoted by nx and let the 

relative frequency in category i of X be/?/ (0 </?/ < 1). The entropy H(X) of the variable is 
then defined as 

H(X) = -2iPilog2pi (11) 

Entropy can be interpreted as a measure of the variability of a numerical or nonnumeric 
distribution. It shares with the variance of a distribution of a numerical variable the 
property that it attains its maximum value if, for all i, p\ is equal to 1/w (with n the number 
of categories of the variable). It also attains its minimum value if/?/ is equal to one for one / 
and consequently zero for other categories (i.e., if the variable has only one category). The 
maximum and minimum values are equal to log2 n and 0, respectively (0 log2 0 is defined as 
zero). 

The logarithm in Equation (11) is taken to the base two, which leads to an 
interesting interpretation ofH(X). It expresses the variability mX in terms of the basic unit 
of measurement within Information Theory: the average number of binary decisions, or bits 
of information, necessary to make a classification within a system of categories (Attneave, 
1959; Krippendorf, 1986; Shannon & Weaver, 1949). For example, consider a user of a 
particular device (such as an application program) who chooses an input action s from a set 
of possible input actions I, then, H(I) expresses the average amount of uncertainty under 
which the user operates. Note that actions that are logically possible, but never actually 
chosen, do not enter the measure (i.e., actions s such that sei, but with/?,? = 0). To this 
purpose the convention 0 log2 0 = 0 is adopted here. The entropy measure H(X) can be 
extended to the joint distribution of two or more variables as H (XYZ...) = - 2/ 2y 2#... 
Pijk... 1°8: Pijk...- Analysis of the joint distributions of variables is at the heart of 
Information Theory. 

Entropy can be defined not only for marginal and joint distributions, but also for 
conditional distributions. For a given value x ofX, the conditional entropy of Y, H(Y | x) is 
defined as - 2/ (py \ /?/) log2 (/?» | /?/). Note that this definition is completely analogous to 
the entropy of the marginal distribution. The only difference is that the marginal probabili- 
ties pi are replaced by the conditional probabilities py\ /?/. The average conditional entropy 
of Y, given X, is a weighted sum of the conditional entropies for given values of X, with 
weights equal to/?/, the proportion of observations for the particular value of Xon which the 
conditioning has occurred. Thus, H(Y\ X) = - 2//?/ 2y (/?//1 /?/) log2 (py | /?/) = - 2/ ZjPij 
log2(pij \Pi). 
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Information Transmission. The predictability of output symbols o e O from the set 
of input symbols s e /is in Information Theory defined as information transmission, T(I, 
O). The amount of information transmission can be expressed in several different ways 
that are mathematically equivalent (Krippendorff, 1986). We will discuss two concep- 
tions of information transmission. The first conception defines information transmission, 
T(I, O), as the difference between the maximum entropy and the observed entropy. 
Hence: 

T(I,0) = H(I) + H(0)-H(IO) (12) 

A participant endowed with a perfectly valid mental model of a device that can be 
characterized as a DFA (i.e., with a mental model that is a DFA) would render an 
observed entropy that is equal to zero (i.e., H(IO) = 0), that is, per row (or column, 
whatever is appropriate), p{ = 1 for one cell and zero for all others, in which case both 1 
log21=0 and by convention 0 log2 0 = 0. In the case of a total lack of predictability the 
observed entropy would equal its maximum value, H(IO) = H(I) + H(0). That is, the 
observed entropy equals the sum of the marginal entropies H(I) and H(0), respectively. 

Notice that participants can not only differ in the validity of the model they are 
using, that is, the extent to which the observed entropy approaches zero, but also in the 
way they use the model. Participants can differ in preference for certain input actions by 
which they act upon the device. For example, recall the previously discussed LOGO 
'Turtle World'. Let us assume that the turtle is facing "north", then a vertical line with a 
length of 100 units can be drawn southward in several ways: (a) by a single command 
(i.e., BACK 100), and (b) by a series of commands (i.e., [RIGHT 180 FORWARD 100] 
or [LEFT 180 FORWARD 100]). Research shows that children have a preference for the 
latter way of drawing the line (Campbell, Fein, Scholnick, Schwarts, & Frank, 1986; Fay 
& Mayer, 1987). As a result the observed variety of input symbols, H(J), will be lower 
than can be expected on the basis of a uniform distribution of probabilities, since the use 
of one particular symbol ( i.e., BACK) is systematically avoided. Notice also that 
reduction in observed variety in / does not necessarily imply a similar reduction in O. 
This may even occur in the case of a perfectly deterministic mental model (as the 
example shows). 

This conceptualization of predictability as a (general) reduction of uncertainty is 
clear and straightforward as a first approach, but it does not provide precise information 
about the contribution of each individual input symbol to the observed entropy. The 
second conception of information transmission is based on the notion that knowing about 
/ may reduce the uncertainty about O. Thus, H(0 \ I) < H(0) with information 
transmission defined as 

T(I,0) = H(0)-H(0\I) (13) 

where H(0 \ T) denotes the entropy in O given /. In information theoretical terms H(0 \ I) 
represents the noise produced by the input symbols. H(011) gives the average entropy of 
O over each observed input symbol, that is, a weighted sum of entropies associated with 
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each row of the matrix (i.e., H (O | /))• Thus, H(0 \ I) = E,-/>(z).#(0 | 0). where p(i) 
denotes the relative frequency of symbol i (or row /). The information transmission 
statistic can be straightforwardly extended to three-way classifications. For example, T (I, 
0\Q) = H(0\Q)-H(0\ IQ), where the dependence of O on the joint occurrence of / and 
Q is modeled (see Part II). 

Proportional Reduction in Uncertainty (PRU). The association between categories 
in a two-way classification is conventionally expressed as 

nH (OJ) = T(I, O) I H(0) = [Hiß) - H(01I)] I H(0)  (14) 
In a three-way classification the additional factor leads to the following: % (O \IQ) = T (IQ, 
O) IH(0) = [H (O) -H(0\ IQ)] IH(0). The interpretation of TJH (O | IQ) is analogous to 
the partial correlation coefficient in continuous-variable statistics. 

The observed probabilities in a cross-classification do not in general coincide with 
their population values. Hence measures of transmitted information are partly determined 
by sampling fluctuations (i.e., they are generally biased). For a two-dimensional table the 
observed measure may be larger than zero whereas it's true population value is not. The 
measure of transmitted information for a two-dimensional table is a simple function of the 
likelihood-ratio statistic G2 for the chi-square test of independence of the variables that form 
the cross-classification (i.e., T (I, O) = G2 / In, where n is the total number of observations). 
Thus, the G2 statistic can be used to test whether T (I, O) is different from zero 
(alternatively, the asymptotically equivalent Pearson %2 statistic can be used). If G2 is not 
statistically significant, the variables are assumed independent and T (I, O) is assumed to be 
zero. The G2 statistic is often used to compare the fit of loglinear models that are fitted to a 
cross-classification by maximum likelihood. For a two-dimensional table, G2 compares the 
fit of the independence model versus a model of (unrestricted) dependence of the variables. 
The latter model fits the data perfectly, because the observed and predicted cell frequencies 
in the table are identical (it is a so-called saturated model). If G2 is not significant, the 
variables are presumably independent. In the independence model the cell probabilities are 
fitted as the product of the marginal probabilities (i.e., p (s/, ok) = p (sj) x p (ok)). If the 
value of/? (SJ, ok) under independence is substituted in T (I, O) the latter becomes zero 
(under the dependence model, the value of T (I, O) is the one computed from the observed 
probabilities). Thus, setting T(I, O) to zero if G2 is not significant can also be interpreted as 
using test statistics to fit an appropriate model (e.g., a loglinear model is first fitted to the 
table) and subsequently computing measures of transmitted information from the 
probabilities generated by the model. For a three dimensional table, where the third 
dimension is formed by the states, the important models to consider are: (1) a model of 
complete independence, (2) a model of dependence of /and O, where the dependence is the 
same for the different states, and (3) a model where the dependence of / and O is different 
for different states. In practice, model fitting and testing may be complicated by observed 
frequencies of zero in the table. If zero frequencies occur, it may not be possible to fit some 
models or some estimated frequencies may become zero, in which case the degrees of 
freedom need to be adjusted. A second problem that in practice can occur is that the 
generated frequencies are too small for the chi-squared approximation to be valid. 
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PART II 

The MAP test: A spatial reasoning task 

The MAP test is a spatial reasoning task which requires children to move an object from an 
initial state (IS) to a goal state (GS) on a schematic diagram of a spatial structure. There 
are two versions of the task. One version suggests a city plan with recognizable markers 
(i.e., shops and churches) and a recognizable object (i.e., a bus). The other version has 
abstract markers (such as triangles and squares), and a more abstract object to be moved 
(i.e., a pawn) (see Figure 1). The hypothesis to be tested is that the different experimental 
conditions evoke basically the same input alphabets (operators: forward, back, right, and 
left), but otherwise different finite-state machines (i.e., mental models). This paper does 
not include a complete report of the experimental results. For this the interested reader is 
referred to Ippel and Beem (1997). 

The MAP test consists of 32 items; 8 items are introductory items, 12 items in 
which IS and GS have identical F-coordinates, but an interrupted path from XB to XGS, and 
12 items in which both the X- and 7-coordinates of IS and GS differ. The Y differences 
between IS and GS are systematically manipulated withe's of+5, +3,-3, and -5, where y 
= YQS - YJS- For 12 items GS is located at the left side of the diagram and in the 
remaining items GS is located at the right side of the diagram. The first 8 introductory 
items involve easy problems, that is, these items have uninterrupted paths between IS and 
GS. These items were not used in our analysis. 

Participants. Participants were 48 second-grade (mean age 7.75 years, 23 
female) and 52 third-grade students (mean age 8.75 years, 22 female) from elementary 
schools near Leiden (The Netherlands). 

J| ■ ■ Wot m 'Wr ■ ■ ■ ■ ■ ■ 
nnnnn □□□□□ 
■ fät m Bl* ■ ■ ■ ■ ■ ■ 

(a) "bus" condition (b) "pawn" condition 

Figure 1. 
Different diagram representing an identical spatial structure in the two experimetal 

conditions. 
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Procedure. Students were randomly assigned to one of the two object conditions, 
grade and gender were equally distributed over the conditions. Three experimenters were 
involved in administering the tests. The tests were individually administered in separate 
offices in a quiet part of the school. Test time varied between 30 and 45 minutes. The 
experimenter instructed the students: (1) to place the object (either a pawn or a bus) in its 
initial position; (2) to move the object from its initial state to the goal state while 
following the shortest possible route; (3) to talk aloud while moving the object. Students 
were asked to describe the moves of the objects such that (a) in the pawn condition, the 
experimenter could perform the same move, even though he or she could not see the 
actual move being performed, and (b) in the bus condition, an imaginary bus driver could 
follow up the instructions and drive the bus to its goal. The experimenter scored the 
actual physical state of the object after a command had been executed. Verbal protocols 
were audio taped and later typed out. Two raters independently scored each protocol. 
The raters scored each statement according to a predefined input category system. 
Divergent scorings were discussed until agreement was reached in a separate session and 
scored accordingly. 

The mental model hypothesis 

For each of the two conditions a detailed hypothesis concerning the mental model to be 
evoked by the experimental conditions can be formulated. Figure 2 shows the state 
transition diagrams representing the mental models for the bus and the pawn. The blocks 
represent the states, the arrows represent the state transitions, and the letters next to the 
arrows denote the input symbols, viz., L, R, F and B denote LEFT, RIGHT, FORWARD 
and BACK, respectively. The letters N, E, S and W, in the state transition diagram 
representing the mental model of a bus, refer to names of the four states qj, ...,q4 (i.e., 
north, east, south and west), respectively. 

N 

F 

o w o;         jo E L  €♦ 0  R 

B 

v-Jf/ 

o 
S 

(a) mental model "bus" (b) mental model "pawn" 

Figure 2. 
The state transition functions represented as a state transition diagrams. 
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Bus model. The bus starts out in state qj, that is, facing 'north'. In this state the next 
output function comprises four productions which map an element from the set of input 
symbols /= {F, B, L, R} onto the set of output symbols O = {y-, y+, x-, x+, r-, r+). The 
symbols y-, y+, x-, and x+ refer to movements along the Y- and X-axis and the symbols r+ 
and r- refer to a clockwise and a counter clockwise rotation of 90 degrees, respectively. 
These productions are X^ -» y-, X^ -> y+, X^ -» r-, and X^ -> r+. Figure 2 indicates 
that the choice of either F or B effects the system's physical state, that is, F and B do 
effect the location of the bus. However, these input symbols would not change the state 
of the mental model. Thus, the same set of productions holds for the next input. If one of 
the input symbols L and R is chosen, not only the system's physical state will be affected, 
but the mental model of the bus also will enter a new state (either q4 or qj). That is, the 
bus turns either west or east and enters either q4 or q2, respectively. For example, let us 
assume that the bus is facing north and that the student instructs the imaginary bus driver 
to take a turn to the right, such that the bus now faces east. At the same time, a new next 
output function holds with the productions: X^ -» x+, X^ -> x-, X^ -» r-, and X^ -> r+. 
Table 1 summarizes the four different next output functions that define the four states of 
the mental model of the bus. 

Table 1. Next output functions of each of the four states of the mental model for the 
bus. 

A qi <l2 13 q4 

F y- X+ y+ x- 

B y+ x- y- x+ 

L r- r- r- r- 

R r+ r+ r+ r+ 

Pawn model Objects such as a ball, or a pawn, do not have intrinsic perceptual features 
such as a front side, or backside, and therefore, no left or right side. Sentences such as 
"move the pawn forward" and "turn the pawn to the right" cannot be meaningfully related 
to spatial features of the object itself, and therefore, most likely, will be interpreted in 
relation to the direction the student is facing. As the student's position does not change 
during the test session the same function is expected to map the set of input symbols / = 
{F, B,L,R} onto the set of output symbols O = { y-, y+, x-, x+}, that is, X^ —> y-, X^ -> 
y+, ^(L) -» r-, and X^ -> r+. Therefore, the mental model of a pawn is a one state finite- 
state machine, an example of a so-called trivial machine. In this paper we will not be 
concerned with the pawn condition (see Ippel and Beem, 1997). 
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Empirical evaluation 
The first aspect of a mental model as a finite-state machine to be considered concerns the 
input alphabet (I) and output alphabet (O) that the participant uses to describe the 
interaction with the artifact under investigation. These alphabets may differ from the 
alphabets that define the proposed mental model. The latter alphabets will be referred to 
as I* and O*, respectively. Participants can deviate from model specifications in two 
distinct ways. First, the participant uses less input and/or output symbols than the 
hypothetical model assumes, that is, / c I* and/or OcO*. This poses no analytical 
problem, because entropy (i.e., H(I) and # (0)) is a measure of observational variety and 
unobserved possibilities do not enter into the measure (Krippendorff, 1986). Of course, 
this in turn suggests that the participant does not utilize the artifact's possibilities to its 
fullest extent. 

More problematic is the possible event that / and /* and/or 0 and O* only 
partially overlap. That is, the participant uses input symbols and/or output symbols, 
which are not member of the finite sets I* and O* that define the proposed finite-state 
machine. Partial overlap represents a more serious misconception of the functioning of 
the artifact. Notice that non-overlap of 0 and O* is more serious than non-overlap of I 
and /*, because the latter dissimilarity may result from differences in labeling the input 
symbols. 

The second aspect to be evaluated relates to the contribution of the mental model 
in the predictability, or control, of the behavior of the device. Information Theory 
expresses this predictability, or control, aspect as information transmission. In Part II we 
will adopt the second approach that defines information transmission as 

T(I,0) = H(0)-H(0\1) (15) 

where H (0 | I) denotes the entropy in O given I. The question of whether or not the 
participant's mental model encompasses a postulated set of model states may be 
investigated by testing the statistical significance of the increase in proportional reduction 
of error variance when the postulated set of model states is included in the analysis. This 
analysis requires the comparison of a two-way classification table (see above) with a 
three-way table. Several approaches for analyzing three-way classification tables are 
possible. We choose an approach discussed by Wickens (1989) in which the transmission 
of information between two factors is conditioned on levels of the third. More 
specifically, we will consider the mapping of input symbols s e Ion output symbols o e 
O given the model states q e Q. Let Q be restricted to level qj, then the transmission 
between / and O is: 

T(I,0\qi) = H(0\qi)-H(0\Inqi) (16) 

Thus, T(I, O | q{) is a two-way transmission statistic for each level q\. The conditional 
information transmission T(I, O \ Q) is the weighted mean over these two-way statistics, 
T(I, O | Q) = 'LiPiqd-W» O I <li)- In the passages that follow, data of two participants 
(Appendix 2) will be discussed to illustrate the analytical possibilities of the approach. 
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Participant #75. This participant demonstrates an awareness of the complete set 
of input and output symbols that are part of the definition of the mental model as a finite- 
state machine. Table 2 presents the data of participant #75 as a two-way classification 
table of input symbols by output symbols, without considering the different model states. 
It displays the amount of noise associated with each input symbol and its contribution to 
the average amount of entropy that remains when the input symbols are known. The 
columns 2 to 7 contain the conditional probabilities, p (O \ i) and column 9 the entropies 
H(01 i) associated with each input symbol. The final column displays the contribution of 
each symbol to the average observed entropy in O, that is, H(0 | I). Each symbol's 
contribution is weighted according to its relative frequency (i.e., p(i).H(Q \ i)). The total 
entropy in O is equal to 2.57, and H(0 \ I) equals 1.64. Consequently, T(I, O) = .93. The 
proportional reduction of error according to Equation (13) is .36. Note that input symbol 
MoForw has the largest contribution to the average amount of noise produced by the 
input symbols. As can be inferred from Appendix 2 this source of noise disappears when 
different model states are taken into account (see also Table 3). Table 3 demonstrates 
that the prediction of the output symbols was substantially improved by taking the 
postulated model states into consideration. For each of the states of the mental model the 
participant correctly maps the input symbols onto the output symbols, except for some 
noise in the mapping of TuLeft onto the output symbols r- and r+, while participant's 
mental model is in state "north". This noise represents the familiar phenomenon of left- 
right confusion found in young children. Note that this analysis does not quantify the 
amount of equivocation of TuLeft and TuRight in model state "west" (compare Table 3 
with participant #75 data in Appendix 2). In fact, the analysis shows that left-right 
confusion can take two forms, either it represents uncertainty about the actions attached 
to an input symbol, or uncertainty about the input symbols attached to an action. Table 4 
presents some conditional information transmission statistics. In summary, the 
conditional uncertainty in 0,H(0\ Q), amounts to 1.022. The conditional information 
transmission T (I, O \ Q) equals .895. The proportional reduction in error now equals 
.876. 

Observe now that T (I, O) and thus the proportional reduction in error in Table 2 
would be zero if the probabilities in every row would be the same as the marginal 

Table 2. Association of input symbols and output symbols without considering dif- 
ferent model states (data participant #75). 

input 
symbols y- 

output symbols 

y+         x-        x+ r- r+ 
p(i)      H(0|i) p(i).H(0|i) 

MoForw 
MoBack 
TuLeft 
TuRight 

0.277 
0 
0 
0 

0.266 
1 
0 
0 

0.213 
0 
0 
0 

0.245 

0 
0 

0 
0 

0.529 
0.167 

0 
0 

0.471 
0.833 

0.686       1.993 
0.022              0 
0.248       0.998 
0.044       0.650 

1.367 
0 

0.248 
0.028 

p(o): 0.177 0.19 0.136 0.156 0.129 0.143 H(0|l)= 1.643 
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probabilities p(ok). This condition defines independence of I and O. Deviations from 
this condition define dependence or 'interaction' of I and O. In general, an interaction 
exists ifp (SJ, o#) is not the same as p ($/) x p (o#) for at least one cell in the table. 
Because the observed probabilities are subject to sampling fluctuations, this condition 
may be tested formally by a statistical test for independence. For a two-way contingency 
table such as table 2, the well-known Pearson x2 statistic or the loglikelihood ratio 
statistic may be used. Both have approximately a chi-squared distribution in large 
samples. More precisely, the validity of the chi-squared approximation depends on the 
expected frequencies under the null hypothesis of independence. As observed earlier, 
such tests of the statistical significance can be interpreted as fitting models and testing the 
differences of fit between models. Loglinear models for contingency tables are often 
applied for this purpose. For the two-way contingency table, the model of independence 
is M + I + O, where M is a "general mean" and / and O are the effects of input and 
output. The model M +1+ O +1* Oistiie model for dependence or interaction of / and 
O. This is the so-called saturated model, which always fits the data perfectly (i.e., the 
expected frequencies generated by the model are the same as the observed frequencies). 
The loglikelihood ratio statistic for the 

Table 3. Contributions to the entropy of input symbol per model state (data: 
participant #75). 

model 
states: 

input 
symbols: P(i) H(0|i) p(i).H(0| 

i) 

north MoForw 
MoBack 
TuLeft 

TuRight 

0.500 
0.058 
0.346 
0.096 

0 
0 

0.964 
0 

0 
0 

0.334 
0 

east MoForw 
TuLeft 

0.719 
0.281 

0 
0 

0 
0 

south MoForw 1.000 0 0 

west MoForw 
TuLeft 

TuRight 

0.714 
0.250 
0.036 

0 
0 
0 

0 
0 
0 

independence model can thus be interpreted as comparing the fit of this model with the 
model that includes the interaction. The Pearson %2 statistic compares the observed and 
expected frequencies. Loglinear models generalize to higher-dimensional contingency 
tables. The saturated model for table 4isM + I+0 + Q + I*0 + I*Q + 0*Q + I* 
O* Q. The last term signifies that the interactions / * O are different for different states, 
which effectively means that inclusion of the state effect increases the proportional 
reduction in error. 
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All loglinear models possible with the three factors 7, O and Q were fitted to the 
data of participant #75. Evaluating the fit of these models by the standard Pearson or 
loglikelihood ratio statistics was however problematic, because many expected 
frequencies were less than one, which probably makes the chi-squared approximation 
invalid.4 Models including two two-factor interactions generated so many zero expected 
frequencies that no degrees of freedom remained for evaluating the models. However, it 
seems safe to conclude that the no-interaction model (i.e., model M+I+ 0 + Q) does not 
fit the data of participant #75, x2(80 df) = 753.176. This statistics compares the model 
with the saturated model, which is the model for which the input-output interaction is 
different for different states. The model including the main effects and input-output 
interaction could not be evaluated because too many expected frequencies were zero. 

Table 4. Conditional information transmission statistics (data participant #75). 

model 
states: p(q.) H(Q[q.)     p(q.).H(Q|q. )    H(Q|lnq.)     T(l,Q|q.)     p(q.).T(I,Q|q.) 

q1: north 0.380 1.700 0.645 0.334 1.366 0.518 
q2: east 0.234 0.857 0.200 0 0.857 0.200 
q3: south 0.182 0 0 0 0 0 
q4: west 0.204 0.863 0.176 0 0.863 0.176 

H(Q|Q)= 1.022 T(I,Q|Q)= 0.895 

Finally, the data provide some insight into a redundancy caused by the mental 
model. Recall that in each problem the bus starts out facing "north". The problems were 
designed such that the goal state required the bus to make 6 times an y+ translation 
(either forward or back), and 6 times an y- translation (idem). The remaining 12 
problems had an initial state (IS) and a goal state (GS) with identical Y-coordinates, but 
the path between IS and GS was blocked so that the bus initially had to be moved across 
the F-axis (either ay- move or ay+ move). Also, in 12 problems reaching the goal state 
required an x- translation and 12 problems required an x+ translation. Since the bus can 
only move forward or back, this implies that the bus first must make a turn (r- or r+) in 
order to be able to move along the X-axis. Further, recall that the instruction urged the 
students to take the shortest route from IS to GS. In summary, the experimental 
conditions were designed such that a uniform distribution of input symbols was not 
hampered by extraneous variables. Redundancy is defined as the difference between the 
entropy of a uniform distribution, H (I)max, and the observed entropy, H (I) (Krippendorff, 
1986). The relative frequencies by which participant #75 used the input symbols F, B, L, 
and R in model state "north" were .500, .057, .346, .096, respectively.  Or rather, if we 

4 There is evidence that Pearson's %2 more closely resembles the chi-squared 
distribution in sparse tables (see e.g., Read & Cressie, 1988). Read and Cressie also 
present statistics for which the chi-squared approximation is closer to the distribution in 
small samples with small expected frequencies, but these were not used here. 
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correct for the left-right confusion in model state "north" these percentages would be 
.500, .057, .211, and .230, respectively. The maximum uncertainty, H (i)maX), equals 2 
bits, whereas the observed entropy (after left-right correction), H (7), is equal to 1.697 
bits, which means an uncertainty reduction of 16.5 %. A plausible explanation for this 
redundancy seems to be the notion that a bus cannot easily be driven backward. 
Therefore, a low likelihood of choosing input symbol B seems to follow from the mental 
model. This redundancy may be an indicator of the strength of the mental model and 
may differ across participants. 

Table 5. Two-way cross-tabulation of input and output symbols (data: participant 
#32). 

output symbols 
input symbols      y- y_+ £ x+ £ r+ not-0      total 

MoForw 13                           5             2                                                          7            27 
MoBack 13                                                                                                 13 
TuLeft 2                                                          2 

TuRight 2                                           2 

not-l . 31 31 
13 13 5 2 2 2 38 75 

Participant #32. We will discuss only one aspect of the data of this participant. 
Participant #32 appears to use an input and an output alphabet which contain the postu- 
lated alphabets as subsets (see data participant #32 in Appendix 2). Table 5 presents a 
simplified overview of the mappings of the input symbols to the output symbols. Verbal 
instructions and physical moves of the bus that could not be categorized as elements of 
the postulated input and output alphabet was categorized as not-/ and not-O, respectively. 
Table 5 clearly shows that most input symbols s e /map onto output symbols o e O. All 
input symbols s g I map onto output symbols o £ O. This suggests the existence of a 
core model with an input alphabet and output alphabet similar to the postulated alphabets. 
In addition, participant #32 uses symbols, which seem to represent a relatively independ- 
ent somewhat degenerated version5 of the core model. Figure 3 shows the conditional 
probabilities of the occurrence of a not-/ symbol given the occurrence of a particular 
model state. The relationship between these probabilities and the model states can be ac- 
curately described (R2 = .93) by a second degree polynomial, suggesting that the diffi- 
culty the participant experienced in utilizing the core mental model (i.e., more or less 
similar to the postulated model of bus model) is a function of the absolute difference be- 
tween the participant's orientation and the orientation of the object on the map. 

5 Degenerated version because these (input and output) symbols have lost the 
distinction between turn and move. 
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north east south 

model states 

west 

Figure 3. 

Conditional probabilities of/symbols and not-/ symbols given the occurrence of a 
model state. 
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General Discussion 

In this paper we proposed to formally characterize mental models as a finite-state 
machine, which is fully described by its functions 8 and X. The motivation to provide 
such a formal description was that the theory of finite-state machines defines a class of 
mathematical structures with well-known properties. Thus, results of formal analysis can 
serve as a basis for studying cognitive processes and cognitive representations of interac- 
tive environments in several ways. First, this formalism makes it possible to achieve a 
fully parsimonious description of any particular mental model, because the theory of 
finite-state machines provides systematic ways of achieving a minimal form of a machine 
that defines a given set of input-output mappings (Denning et al., 1978). Second, this 
formalism can also be used as a tool to identify factors that determine the complexity of 
an interactive device such that devices with different complexity can be designed and 
experimentally compared (see e.g., Ippel and Meulemans, 1997). In particular, in combi- 
nation with an information theoretical analysis the information load of an interactive 
device in terms of information to be transmitted can be objectively quantified (i.e., the 
maximum entropy to be reduced in order to attain control over a device). Mental models 
can be evaluated in terms of the reduction in information transmission load they produce. 
If we consider the example presented in Part II of this paper, it becomes clear that the 
mental model of the bus induces a preference in participants for the input signal F over B 
and a slight preference for R over L. The redundancy created by this input action pattern 
in turn implies a reduction in information transmission load. At the same time, however, 
it requires longer input strings (i.e., more input actions) to achieve the same goal. To 
answer the question as to how beneficial this is to the effective control of devices, further 
research is needed. 
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APPENDIX 1 

Let P : W -» Q be a function of FF into ß. Let R be the relation on W defined by sRt iff 
P(s) = P(t), for s and f in Pf. Then: 

A. R is an equivalence relation. A proof of this proposition can be found in Denning 
et al. (1978). It is included in this Appendix in order to facilitate the reading of 
proposition B. 

B. The function m: WIR -> Q is a one-to-one function. 

Proof. 
A. Since P: W -» Q is a function, for each q e Q, let Wq be the set of states in W that 

map onto q: 

Wq={xeW\q = P(x)} 

We assume that P is an everywhere defined function. Thus, each x e W is element in ex- 
actly one set Wq and the sets Wq form a partition of W. The corresponding relation R is 
defined by 

sRt      iff P(s) = P(t) 

Note that R is clearly reflexive and symmetric. Suppose now sRt and tRu for s, t, and «in 
W. Then, .si?« holds, so R is transitive, and therefore R is an equivalence relation. R par- 
titions FT into equivalence classes usually denoted by [w]: 

[w] = {xe W\P(x) = P(w)} 

The partition of W consists of all equivalence classes of W and is denoted WIR. WIR is 
also called the quotient set defined on Why R. This establishes that a function deter- 
mines an equivalence relation on its domain. 

B. Let R be the equivalence relation defined on a set FT and let WIR be the corresponding 
quotient set (see ad a). Let/?: W^ WIR and m: WIR -» Q be functions. If [w] e W/R, 
and q e Q, then the function m: WIR -» Q is defined by 

m (|>]) = # 

Since m: WIR -» £> is a function TW([W]) has a single value. Also [vt>] = Wq - {x e W\q = 
P(x)} (see ad A). Thus, /w"'([w]) is also a function, that is, a function from Q onto FF/i?. 
Therefore, the function m: WIR -> g is a one-to-one function. 
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Participant #75 

APPENDIX 2 

model      input 
states:  symbols:      y- 

output symbols 
y+ x- x+ r- r+ not-0     Total 

north    MoForw       13 
MoBack 
TuLeft 

TuRight 

not-l 

13 
6 19 

13 
1 
2 

17 17 

east     MoForw 

not-l 

2 

6 

south       not-l 

west     MoForw 
TuLeft 

6 
1 

not-l 

Total 13 13 38 75 
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Participant #32 

model 
states: 

input 
symbols: y- y+ 

Output symbols 
x-               x+ 

north MoForw 
MoBack 
TuLeft 
TuRight 

26 
3 

east MoForw 
TuLeft 

23 

r- 

11 

Total 

26 
3 

7 18 
5 5 

23 
9 9 

south MoForw 25 25 

west MoForw 
TuLeft 
TuRight 

20 
7 
1 

20 
7 
1 

Total 26 28 20 23 19 21 137 
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